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1 Introduction

The assessment of portfolio credit risk has attracted much attention in recent years. One

reason is that participants in the increasingly popular market for structured finance products1

rely heavily on estimates of the inter-dependence of credit risk across various exposures.

Such estimates are also of principal interest to financial regulators who have to enforce new

revisions to capital standards in the banking and insurance industries and, thus, ensure that

regulatory capital is closely aligned with credit risk. By extension, the validation of portfolio

credit risk models is of great interest to both market participants and regulators.

This paper investigates the well-known Asymptotic Single-Risk Factor (ASRF) model

of portfolio credit risk. The popularity of this model stems from its implication – derived

rigorously in Gordy (2003) – that the capital buffer allocated to cover unexpected losses for

a portfolio, ie the credit value-at-risk (VAR) net of expected default losses, is the simple

sum of capital buffers set at the level of individual exposures. This implication – also known

as portfolio invariance of capital buffers – has been often interpreted as alleviating the

data requirements and computational burden on users of the model.2 The reason for this

interpretation is that portfolio invariance implies that portfolio-level capital buffers can be

calculated solely on the basis of exposure-specific parameters: ie individual probabilities of

default (PD), losses-given-default (LGD) and dependence on the common factor.

Its popularity notwithstanding, the “portfolio invariance” implication of the ASRF model

hinges on two strong assumptions that have been criticised as sources of misspecification

errors. Namely, the model assumes that the systematic component of credit risk is governed

by a single common factor and that the portfolio is so finely grained that all idiosyncratic risk

is diversified away. Violations of the “single-factor” and “perfect granularity” assumptions

can affect assessments of portfolio credit risk and, consequently, lead to erroneous estimates

of capital buffers.

Moreover, an application of the ASRF model may be quite challenging, even in the

absence of misspecification errors. An important reason for this is that the “portfolio in-

variance” implication does not remove fully the necessity to adopt a global approach in

calibrating the model. In particular, estimates of exposure-specific dependence on a com-

mon factor, which are required for an application of the ASRF model, hinge on an estimate

1These products include collateralized debt obligations (CDOs), nth-to-default credit default swap (CDS)
and CDS indices.

2The portfolio invariance property has also been incorporated in the internal-ratings-based (IRB) ap-
proach of the Basel II framework (BCBS, 2005).
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of the common factor itself, which is a market-wide variable.3 Noise in such estimates would

lead to a flawed calibration of the ASRF model, which would be another source of errors in

measured portfolio credit risk.

A contribution of this paper is to propose a unified method for quantifying the impor-

tance of model misspecification and calibration errors in assessments of portfolio credit risk.

In order to implement this method, we rely on a large data set that comprises Moody’s

KMV estimates of PDs and pairwise asset return correlations for nearly 11,000 non-financial

corporates worldwide. Treating these estimates as actual credit risk parameters and con-

structing hypothetical portfolios that match the industrial-sector concentration of typical

portfolios of US wholesale banks, we derive the “true” probability distribution of default

losses. We summarise this probability distribution, which does not rely on the ASRF model,

into a credit VAR net of expected losses. This summary measure is equivalent to a “tar-

get” capital measure necessary to cover default losses with a desired probability.4 Then, our

method dissects the difference between the target capital for a given portfolio and a “short-

cut” capital, which is calculated for the same portfolio on the basis of the ASRF model and

a rule-of-thumb calibration of exposure-specific dependences on a common risk factor.

We decompose the difference between the target and shortcut capital measures into four

non-overlapping and exhaustive components. Two of these components relate to two sources

of misspecification of the ASRF model and are attributed to a “multi-factor” effect and a

“granularity” effect. The other two components relate to two types of errors in the calibration

of the interdependence of credit risk across exposures.5 Specifically, these errors arise from an

overall bias in the calibrated correlations of firms’ asset returns (“correlation level” effect) and

from noise in the calibrated dispersion of these correlations across pairs of firms (“correlation

dispersion” effect).

Another contribution of this paper is that it provides two additional perspectives on flaws

in the calibration of the ASRF model. First, we derive plausible ranges of calibration errors

that arise not from the adoption of “rule-of-thumb” values but as a result of estimating

asset return correlations on the basis of finite data on asset returns. We then convert these

3The IRB capital formula of Basel II avoids the necessity of a global approach by postulating that firm-
specific dependence on the single common factor is determined fully by the level of the corresponding PD.

4In this paper, we use the terms “assessment of credit risk” and “capital measure” interchangeably.
Importantly, our capital measures do not correspond to “regulatory capital”, which reflects considerations
of bank supervisors, or to “economic capital”, which reflects additional strategic and business objectives of
financial firms.

5In order to sharpen the analysis, we do not analyse the implications of errors in the estimates of PDs
and LGDs.
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small-sample errors into deviations from a desired capital buffer. Second, we examine the

importance of an erroneous calibration of the overall distribution of firms’ asset returns.

Such a calibration would affect the measured interdependence of credit risk across exposures

over and above the impact of errors in estimated asset return correlations.

Our main conclusion is that errors in the practical implementation, as opposed to the

specification, of the ASRF model are the main causes of flaws in assessments of portfolio

credit risk. Specifically, the misspecification-driven multi-factor effect would lead a user of

the model to miss target capital buffers by only 1% of their level. This is because a one-factor

approximation fits well the correlation structure of asset returns in our data. Similarly, the

granularity effect in realistically large portfolios causes calculated capital to deviate from

the target level by the negligible 4%. By contrast, capital measures are significantly more

sensitive to plausible miscalibration of the ASRF model. For instance, missing the empirical

dispersion of asset return correlations across pairs of firms would cause a 12% deviation

from target capital. Furthermore, plausible small-sample errors (arising when users of the

model have 10 years of monthly asset returns data) could affect substantially asset return

correlation estimates, translating into a capital measure that deviates from the target level

by 23%. Finally, available data on asset returns suggests that their empirical distribution is

at odds with the conventional normality assumption. As a result, adopting this assumption

leads to an underestimate of target capital by 11 to 22%.

In comparison to articles in the related literature, this paper covers a wider range of

errors in assessments of portfolio credit risk. The related literature has focused mainly on

misspecifications of the ASRF model and has proposed ways to both partially correct for

them and preserve the tractability of the model. Empirical analyses of violations of the

perfect granularity assumption include Martin and Wilde (2002), Vasicek (2002), Emmer

and Tasche (2003), and Gordy and Luetkebohmert (2006). For their part, Pykhtin (2004),

Duellmann (2006), Garcia Cespedes et al. (2006) and Duellmann and Masschelein (2006) have

analysed the validity of the common factor assumption under different degrees of portfolio

concentration in a limited number of industrial sectors. In addition, Heitfield et al. (2006)

and Duellman et al. (2006) examine both granularity and sector concentration issues in the

context of US and European bank portfolios, respectively.6 Articles that stand apart in the

extant related literature are Loeffler (2003) and Morinaga and Shiina (2005), which focus

exclusively on estimation-related issues and derive that noise in model parameters can have

6The recent working paper by the Basel Committee on Bank Supervision (BCBS, 2006) provides an
extensive review of the related literature.

3



a significant impact on assessments of portfolio credit risk.

The remainder of this paper is organised as follows. Section 2 outlines the ASRF model

and the empirical methodology applied to it. Section 3 describes the data and Section 4

reports the empirical results. Finally, Section 5 concludes.

2 Methodology

In this section, we first outline the ASRF model. Then, we discuss how violations of its key

assumptions or flawed calibration of its parameters can affect assessments of portfolio credit

risk. Finally, we develop an empirical methodology for deriving and comparing alternative

sources of errors in such assessments.

2.1 The ASRF model7

The ASRF model of portfolio credit risk – introduced by Vasicek (1991) – postulates that

an obligor defaults when the value of its assets falls below some threshold. In addition, the

model assumes that asset values are driven by a single common factor:

ViT = ρi · MT +
√

1 − ρ2

i · ZiT (1)

where: ViT is the value of assets of obligor i at time T ; MT and ZiT denote the under-

lying values of the common and idiosyncratic factors, respectively; and ρi ∈ [−1, 1] is the

obligor-specific loading on the common factor. The common and idiosyncratic factors are

independent of each other and can be rescaled, without loss of generality, to random vari-

ables with mean 0 and variance 1. Thus, the asset return correlation between borrowers i

and j is given by ρiρj .

The ASRF model delivers a closed-form approximation to the probability distribution of

default losses on a portfolio of N exposures. The accuracy of the approximation increases

when N → ∞ and the largest exposure weight supi (wi) → 0. In these limits – ie when the

portfolio is perfectly granular – the probability distribution of default losses can be derived

as follows. First, let the indicator IiT equal 1 in the event of a default at time T and 0

otherwise. Conditional on the value of the common factor, the expectation of the indicator

7This section provides an intuitive discussion of the ASRF model. For a rigorous analysis of the model,
see Gordy (2003).
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equals

E(IiT |MT ) = Pr(ViT < F−1(PDiT )|MT )

= Pr(ρi · MT +
√

1 − ρ2

i · ZiT < F−1(PDiT )|MT )

= H
(

F−1(PDiT ) − ρiMT
√

1 − ρ2

i

)

where: PDiT is the probability of default by obligor i at time T ; the cumulative distribution

function (CDF) of ZiT is denoted by H(·); the CDF of ViT is F(·) and implies that the

default threshold equals F−1(PDiT ).

Second, under perfect granularity, the Law of Large Numbers implies that the conditional

total loss on the portfolio, TL|M , is deterministic for any value of the common factor M :

TL|M =
∑

i

wi · E(Ii|M) · LGDi

=
∑

wi · H
(

F−1(PDi) − ρiM
√

1 − ρ2

i

)

· LGDi (2)

where LGDi is the loss-given default of obligor i (assumed here to be known ex ante) and

time subscripts have been suppressed.

Finally, by equation (2), the conditional total loss TL|M is a decreasing function of the

common factor M and, thus, the unconditional distribution of TL can be derived directly

on the basis of the distribution, G(·), of the common factor. Denoting by TLα the (1 − α)th

percentile in the distribution of total losses (ie Pr (TL > TLa) = α):

TLα =
∑

wi · H
(

F−1(PDi) − ρiG−1(α)
√

1 − ρ2

i

)

· LGDi

= TL|Mα

where Mα is the αth percentile in the distribution of the common factor.

Thus, in order to cover unexpected (ie total minus expected) losses with probability
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(1 − α), the capital buffer for the entire portfolio should be set to:

κ = TLα −
∑

wi · PDi · LGDi

=
∑

wi · LGDi · [H
(

F−1(PDi) − ρiG−1(α)
√

1 − ρ2

i

)

− PDi] (3)

≡
∑

wi · κi

As implied by this equation, the capital buffer for the portfolio can be set on the basis

of exposure-specific parameters. These parameters reflect the weight of a given exposure, its

LGD and PD as well as the underlying dependence on the common factor. The flip side of

this implication is that each exposure-specific portion of the capital buffer is independent of

the rest of the portfolio and, thus, is portfolio invariant.

In practice, an implementation of the ASRF model requires that one specify the distri-

bution of the common and idiosyncratic factors of asset returns. It is standard to assume

normal distributions, which implies that equation (3) can be rewritten as:

κ =
∑

wi · LGDi · [Φ
(

Φ−1(PDi) − ρiΦ
−1(α)

√

1 − ρ2

i

)

− PDi] (4)

where Φ(·) is the CDF of a standard normal variable.8

2.2 Impact of model misspecification

The portfolio invariance implication of the ASRF model hinges on two key assumptions, ie

that the portfolio is of perfect granularity and that there is a single common factor. In this

section, we examine at a conceptual level how a violation of either of these assumptions

affects capital measures. We dub the two misspecification effects “granularity” and “multi-

factor” effects and, in providing specific examples, use the formula in equation 4 and set

α = 0.1%.

2.2.1 Granularity effect

The granularity effect arises empirically either because of a limited number of exposures or

because of exposure concentration in a small number of borrowers. In either of these cases,

idiosyncratic risk is not fully diversified away. Therefore, the existence of a granularity effect

8Equation (4) underpins the regulatory capital formula in the IRB approach of Basel II.
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implies that capital measures based on the ASRF model are lower than actual unexpected

losses.

The top-left panel in Figure 1 provides an illustrative example of the granularity effect.

In this example, the target capital level for a homogenous portfolio is computed as a function

of the number of exposures (solid line). In addition, the figure also plots the capital measure

implied by the ASRF model (dotted line), which differs from the target one only in that it

assumes an infinite number of exposures. The difference between the dotted and solid lines

equals the magnitude of the granularity effect. As expected, the granularity effect is always

negative9 and decreases when the number of exposures increases.

2.2.2 Multi-factor effect

If the impact of various macroeconomic and industry-specific conditions on credit risk is

best summarised by multiple mutually independent (and potentially unobservable) common

factors of firms’ assets, then the single-factor assumption of the ASRF model would be

violated. Such a violation leads to what we call a multi-factor effect, which is conceptually

different from a failure to measure the impact of multiple factors on the correlation across

obligors. Such a failure is independent of a modelling misspecification and can arise, for

example, when higher concentration in a particular industrial sector is not captured in the

estimated average correlation. However, even if the average correlation across obligors is

measured accurately, an erroneous single-factor assumption ignores the fact that there are

multiple sources of default clustering. This leads to an underestimation of the probability of

a large number of defaults and, consequently, to an underestimation of target capital.

An illustrative example of the multi-factor effect is provided in the top-right panel of

Figure 1. For this example, we construct a homogenous portfolio in which the exposures

can be divided into two groups. In addition to idiosyncratic factors, the credit risk of

the portfolio is driven by two common factors that are group specific. Concretely, this

translates into homogenous within-group pairwise correlations that equal 20% and across-

group correlations that equal zero. The solid line plots the target capital measure, which

incorporate the multi-factor correlation structure, as a function of the relative weight of

exposures in group 1. This measure is lowest when the portfolio is most diversified between

the two groups of exposures, which minimises the probability of large default losses. In

addition, the figure portrays a dashed line, which portrays an alternative capital measure

9Note that the granularity effect should be compared to the negative of the granularity adjustment derived
in Gordy and Luetkebohmert (2006). Such a comparison is reported in footnote 24 below.
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underpinned by a single-factor structure of asset return correlations. This structure matches

exactly the true average asset return correlation but misses the variability of correlation

coefficients in the cross section.

The difference between the dashed and solid lines equals the multi-factor effect. This

difference is largest when the two groups enter the portfolio with equal weights. In this case,

the role of multiple factors is greatest and, hence, a single-factor structure approximates

most poorly the differences among the correlation coefficients of asset returns.

2.3 Impact of calibration errors

Errors in the calibration of the ASRF model can affect assessments of portfolio credit risk

over and above any effects of model misspecification. In this paper, we consider errors in

the calibration of the interdependence of credit risk across exposures. Such errors can be

driven by flawed values of asset return correlations or by an empirically violated assumption

regarding the distribution of asset returns.

Errors in asset return correlation estimates may arise for various reasons. One possibility

is that a user of the ASRF model is data constrained and relies on rule-of-thumb values, which

may simply be correlation estimates for popular credit indices. Such estimates would lead to

a discrepancy between target and calculated capital to the extent that the underlying indices

were not representative of the user’s own portfolio. Alternatively, a user of the model may

have data on the assets of the obligors in its portfolio but these data may cover a short time

period and, thus, lead to small-sample estimation errors in asset return correlations. Such

data limitations are likely to be important in practice because: (i) asset value estimates are

typically available at the monthly or quarterly frequency and (ii) supervisory texts require

from financial institutions five years of relevant data.10

A positive error in the average level of asset return correlations leads to a capital measure

that is higher than the target one. This is illustrated in the bottom-left panel of Figure 1 and

reflects the intuition that a higher level of asset return correlation inflates the probability

that a large number of defaults may occur simultaneously. In the remainder of this paper,

the implications of such errors are dubbed the “correlation level” effect.

10This observation is likely to hold irrespective of the way a user of the model obtains estimates of asset
values. Without relying on a data provider, a financial institution may be able to estimate asset values
directly from the balance sheets of its obligors. In addition, the assets of publicly listed obligors can be
deduced from their stock market prices. Alternatively, Tarashev and Zhu (2006) derive estimates of asset
return correlations on the basis of credit-default-swap (CDS) data.
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In addition, there could be errors in the estimated dispersion of asset return correlations

across exposure pairs.11 The effect of such errors on calculated capital can be understood in a

stylised example. Suppose that all firms in one portfolio have homogeneous PDs and exhibit

homogeneous pairwise asset return correlations. Suppose further that a second portfolio is

characterised by the same PDs and average asset return correlation but includes a group

of firms that are more likely to default together. The second portfolio, in which pairwise

correlations exhibit dispersion, is more likely to experience several simultaneous defaults

and, thus, requires higher capital in order to attain solvency with the same probability. This

is a particular instance of the “correlation dispersion” effect and is portrayed by the upward

slope of the solid line in the bottom-right panel of Figure 1.

This result can be strengthened (dashed line in the same panel) but also weakened or

even reversed if PDs vary across firms. To see why, suppose that the strongly correlated firms

in the second portfolio are the ones that have the lowest individual PDs. In other words, the

firms that are likely to generate multiple defaults are less likely to default. This may lower

the probability of default clustering, depressing the target capital level below that for the

first portfolio. This is illustrated by the dash-dotted line in the bottom-right panel of Figure

1, which has a negative slope for certain degrees of dispersion in asset return correlations.

Even if asset return correlations were known, a flawed calibration of the distribution of

asset returns would still lead to an error in the calibrated interdependence of credit risk across

exposures. The literature on pricing portfolio credit risk has pointed out that empirical asset

return distributions have fatter tails than those imposed by the conventional assumption of

normal distributions. To the extent that this fatness of the tails reflects the distribution of

the common factor, the probability of default clustering and, thus, the target capital level

would be higher than those implied under normality (Hull and White, 2004; Tarashev and

Zhu, 2006). This effect would be observationally indistinguishable from the correlation level

effect and could be studied by considering more general, eg Student t, distributions of the

common and idiosyncratic factors of asset returns.

11Note that there are two sources of dispersion in asset return correlations. First, as discussed in Section
2.2.2, correlations may differ across exposure pairs if the assets of different firms are driven by different
common factors. Second, there may be dispersion across correlation coefficients if there is a single common
factor but the loadings on it differ across firms. This case is examined in the present subsection.
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2.4 Evaluating various sources of error

An important contribution of this paper is a unified empirical method for quantifying the

impact of several sources of error in model-based assessment of portfolio credit risk. In

particular, we construct the difference between target capital measures and shortcut ones,

based on the ASRF model and possible erroneous calibration of its parameters. Then, we

dissect this difference into four overlapping and exhaustive components, attributing them to

the multi-factor, granularity, correlation level and correlation dispersion effects. In order to

probe further the likely magnitude of the last two effects, we derive plausible small-sample

errors that could affect direct estimates of asset return correlations. Finally, we also examine

the extent to which the correlation level effect can be augmented by an erroneous assumption

regarding the distribution of asset returns.

The basic empirical method consists of two general steps. In the first step, we construct

a large (small) hypothetical portfolio that comprises equal exposures to 1,000 (200) firms.12

The sectoral composition of this portfolio is designed to be in line with the typical loan

portfolio of large US wholesale banks.13 Given the constraints of such a composition, the

portfolio is drawn at random from our sample of firms. Since each draw could be affected

by sampling errors, we examine 3,000 different draws for both large and small portfolios.

For a portfolio constructed in the first step, the second step calculates five alternative

capital measures, which differ in the underlying assumptions regarding the interdependence

of credit risk across exposures. Each of these alternatives employs the same set of PD values,

and assumes that LGD equals 45% for all exposures and that asset returns are normally

distributed. We order the measures so that each measure differs from a previous one owing

to a single assumption.

1. The target capital measure incorporates data on asset return correlations. Using

these correlations, we conduct Monte Carlo simulations to construct the “true” prob-

ability distribution of default losses at the one-year horizon. Then we set the target

capital to a level that covers unexpected default losses with a probability of 99.9% (see

Appendix A for detail).

2. The second capital measure differs from the target one only owing to a restriction

12The distinction between large and small portfolios does not reflect the size of the aggregate exposure
but rather different degrees of diversification across individual exposures.

13Such a portfolio does not incorporate consumer loans and, thus, may not be representative of all aspects
of credit risk.
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on the number of common factors governing asset returns. In particular, we adopt a

correlation matrix that fits the original one as closely as possible under the constraint

that correlation coefficients should be consistent with the presence of only one common

factor (see Appendix B). The fitted matrix is then used to derive the one-year proba-

bility distribution of joint defaults on the basis of the so-called Gaussian copula method

(see Appendix C). This distribution is then mapped into a probability distribution of

default losses and, finally, into a capital measure.

3. The third capital measure differs from the second one only in that it assumes that

all idiosyncratic risk is diversified away. This assumption allows us to incorporate the

fitted one-factor correlation matrix in the ASRF formula (equation 4).

4. The fourth capital measure differs from the third one only in that it is based on the

assumption that loading coefficients on the single common factor are the same across

exposures. The resulting common correlation coefficient, which is set equal to the

average of the pairwise correlations underpinning measure 3., is used as an input to

the ASRF formula (equation 4).

5. Finally, the shortcut capital measure differs from the fourth one only in that it incor-

porates alternative, rule-of-thumb, values for the common correlation coefficient.

A dissection of the difference between the target and shortcut capital measures is a simple

by-product of this methodology.14 Specifically, the difference between measures 5 and 1 is

the sum of the following four components: (i) the difference between measures 2 and 1,

which equals the multi-factor effect; (ii) the difference between measures 3 and 2, which

equals the granularity effect; (iii) the difference between measures 4 and 3, which equals the

correlation dispersion effect; and (iv) the difference between measures 5 and 4, which equals

the correlation level effect.

A possible criticism of this methodology is that the shortcut measure is based on an

arbitrarily specified rule-of-thumb correlation coefficient. In order to address this issue,

we derive a plausible range of errors in pairwise correlation estimates that is generated by

realistic limitations on the size of relevant data. Specifically, we draw time series of asset

returns from a joint distribution characterised by constant pairwise correlations equal to the

correlation underpinning measure 4. Using the sample correlation matrix of the simulated

14Importantly, the method also applies to alternative definitions of target and short-cut capital, so long
as the true correlation structure and short-cut correlation estimates chosen by the user are clearly defined.
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series, together with a typical value for the probability of default, we derive an estimate of the

probability distribution of joint defaults. We then incorporate this probability distribution

in the ASRF formula (equation 4) to obtain an “estimated” capital measure.15 Finally, we

quantify the estimation errors in this capital measure, which are driven by small-sample

noise in the measured overall level and dispersion of asset return correlations.

Another possible criticism of our basic methodology is that the shortcut capital measure

incorporates the arguably unrealistic assumption that all underlying distributions are normal.

We relax this assumption by generalising the shortcut measure to accommodate Student t

distributions of the common and/or idiosyncractic factors of asset returns. This requires

using the general ASRF formula in equation (3) and making two technical adjustments. The

first adjustment addresses the fact that the variance of a Student t variable is larger than

unity.16 The second adjustment addresses the fact that the generalised CDF of asset returns,

F(·), does not exist in closed form. In concrete terms, we calculate the default threshold

F−1(PDi) on the basis of 10 million Monte Carlo simulations.

3 Data description

This section describes the two major blocks of data used in this study: (i) the risk parameter

estimates provided by Moody’s KMV and (ii) the sectoral distribution of exposures in typical

portfolios of US wholesale banks.

3.1 Market-based estimates of risk parameters

Our sample includes the universe of firms covered in July 2006 by two proprietary products

of Moody’s KMV: the expected default frequency (EDF) model and the global correlation

(GCorr) model. An EDF is an estimate of the 1-year physical PD of a publicly traded firm,

while the GCorr model delivers an estimate of the physical pairwise asset return correlation

between any two publicly traded firms in the dataset. We abstract from financial firms –

whose capital structure makes their PDs notoriously difficult to estimate – and work with

10,891 firms.

The sample covers firms with diverse characteristics. Specifically, 5,709 of the firms are

headquartered in the United States, 4,383 in Western Europe, and the remaining 799 in the

rest of the world. The distribution of the 10,891 firms across industrial sectors is reported

15These calculations abstract from the granularity and multi-factor effects.
16Specifically a Student t variable with r > 2 degrees of freedom has a variance of r

r−2
.
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in the last column in Table 1, with the largest share of firms (about 10.4%) coming from the

business service sector. Importantly, only 1,434 (or 13.2%) of the firms have a rating from

either S&P or Moody’s, which matches the stylised fact that the majority of bank exposures

are unrated.

The two proprietary products, EDF and GCorr correlations, are derived within a coherent

framework, built on a Merton (1974) type model. This model, largely in line with the

ASRF model, postulates that a default occurs when the borrower’s asset value falls below a

threshold (see Crosbie and Bohn, 2003, for detail). EDFs have been widely used as proxies for

physical default probabilities (see Berndt et al., 2005; Longstaff et al., 2005, for example). In

turn, GCorr correlations rely on model-implied time series of asset values and a multi-factor

structure of asset return correlations. In particular, this model incorporates 120 common

factors, including 2 global economic factors, 5 regional economic factors, 7 sector factors,

61 industry-specific factors and 45 country-specific factors (see Das and Ishii, 2001; Crosbie,

2005).

Table 2 and Figure 2 report summary statistics of the Moody’s KMV 1-year PD and asset

return correlation estimates. PDs have a long right tail and, thus, their median (0.39%) is

much lower than the mean (2.67%). In addition, the favourable credit conditions in July

2006 have resulted in 1,217 firms (ie about 11.2% of the total) having the lowest EDF score

(0.02%) allowed by the Moody’s KMV empirical methodology. For comparison, the upper

bound on the Moody’s KMV PD estimates (20%) is attained by 643 (or 5.9%) of firms in

the sample. For pairwise correlation coefficients, GCorr imposes a lower limit of 0 and an

upper limit of 65%. The majority of pairwise correlation coefficients are between 5% and

25%, while the mean stands at 9.24%.17

3.2 Constructing hypothetical portfolios

In constructing hypothetical portfolios, we mimic the sectoral distribution of large US whole-

sale banks, as reported in Heitfield et al. (2006). Specifically, to construct a large portfolio

(1000 exposures), we apply the 40 non-financial sector weights reported by that paper (see

Table 1). For a small portfolio (200 exposures), we rescale the 10 largest sectoral weights

so that they sum up to unity and set all other weights to zero. Within each sector, we

17The GCorr correlation estimates are quite in line with correlation estimates reported in other studies.
For instance, Lopez (2004) documents an average asset correlation of 12.5% for a large number of US firms
and Duellman et al. (2006) estimate a median asset return correlation of 10.1% for European firms.
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draw firms at random.18 All firms in a portfolio receive equal weights and, thus, there is a

one-to-one correspondence between the number of firms in a sector and this sector’s weight

in the portfolio.

The sector and name concentration indices, reported at the bottom of Table 1 are in line

with those reported in Heitfield et al. (2006). The sector (name) concentration index of large

portfolios studied in this paper is calculated as the sum of squared sectoral (name) weights

and equals 0.0432 (0.001), which belongs to the interval [0.03, 0.045] ([0.000, 0.003]) reported

in Heitfield et al. (2006). For small portfolios the corresponding indices and intervals are

0.1135 (0.005) and [0.035, 0.213] ([0.001, 0.008]), respectively.

4 Empirical results

We implement the empirical methodology described in Section 2.4 and quantify the impact of

various sources of error in ASRF-based assessments of portfolio credit risk. Before reporting

the empirical results, it is useful to highlight several aspects of the methodology.

First, as far as calibration of the model is concerned, the analysis in this paper focuses

exclusively on errors in the values of parameters that relate to the interdependence of credit

risk across exposures. Thus, we abstract from potential errors in the calibration of individual

PDs and LGDs. Specifically, all capital measures we consider are based on Moody’s KMV

PD estimates, which we treat as being free of estimation error, and on LGDs set to 45%,

which is a rule-of-thumb value in the literature. Considering the impact of noise in PD and

LGD values would make it extremely difficult to isolate the correlation level and dispersion

effects we focus on. This is because noise in PDs and LGDs would interact with noise in

correlation inputs in a highly non-linear fashion.

Second, we make the stylised assumption that portfolios consist of equally weighted

exposures. Considering disparate exposure sizes would require considering an additional

dimension of portfolio characteristics, as it will no longer be the case that the granularity of

a larger portfolio is necessarily finer. In addition, lower granularity that results from higher

concentration in a small number of borrowers would also have a bearing on the number of

common factors affecting the portfolio and on the overall correlation of risk. This would

make it impossible to isolate the granularity effect from the other three effects we consider.

18In drawing firms from the sample set, we choose to draw randomly with replacement within each industry.
If the same firm is drawn twice, the corresponding pairwise correlation is set equal to the average correlation
in the industry sector. Drawing randomly without replacement does not affect materially the results.
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Finally, our analysis treats the correlation matrix provided by Moody’s KMV as providing

the “true” correlation of asset returns. Of course, this matrix is itself an estimate and is

subject to errors. Nevertheless, the Moody’s KMV correlation matrix provides a reasonable

benchmark to work from. In addition, we have verified that results regarding the relative

importance of alternative sources of error depend only marginally on the accuracy of the

GCorr estimates, even though the absolute impact of alternative sources of error does change

with the benchmark correlation level.

4.1 Various errors in shortcut capital measures

To study various sources of error in assessments of portfolio credit risk, we start by calculating

the five capital measures listed in Section 2.4 for 3000 large and as many small hypothetical

portfolios. Even though they are constructed to have the same sectoral composition, the

portfolios differ from each other with respect to the underlying risk parameters. For example,

as reported in Table 3, the average PDs in large portfolios have a mean of 2.42% but can

vary considerably across portfolios, ie from 1.79% to 3.12%. In comparison, the average

asset return correlation changes little across portfolios, ranging between 9.14% and 10.73%

for large portfolios. Interestingly, in line with a construct of the Basel II IRB approach,

firms with higher PDs tend to be less correlated with the rest of the portfolios.19 This

is illustrated succinctly by the last line in each panel of Table 3, which reports negative

correlations between individual PDs and the corresponding loading on a single common

factor.20

Two of the capital measures deliver the target and shortcut capital levels, summary

statistics of which are reported in Table 4. For large portfolios, the table reveals that target

capital averages 2.95% (per unit of aggregate exposure) across the 3000 simulated portfolios.

The corresponding shortcut level (based on a rule-of-thumb asset return correlation of 12%)

is 76 basis points higher. The difference between the two capital levels amounts to 26% of

target capital and reflects the fact that, compared to shortcut parameters, the parameters

underpinning target capital imply 16-17 fewer defaults at a 99.9% credit VaR.21 As we will

19The negative relationship between PDs and correlations (ie loading coefficients) is likely to be a general
phenomenon. For example, Dev (2006) finds that global factors often play bigger roles for firms of better
credit quality.

20This calculation is conducted under the one-factor approximation of the correlation matrix
21Because all exposures are equally weighted and have the same LGD (45%), one more default at the

target VaR level raises the capital buffer for large (small) portfolios by 0.045 (0.225) percentage points, per
unit of aggregate exposure.
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see below, this result can change drastically if one changes the shortcut value of the asset

return correlation.

Decomposing the discrepancy between target and shortcut capital for large portfolios

reveals that errors caused by model misspecification play a minor role. Specifically, the

multi-factor effect is with the expected negative sign (recall the discussion in Section 2.2.2)

but entails a discrepancy that amounts to only 1% of the target capital level. This reveals

that the one-factor approximation fits closely the raw correlation matrix.22 Indeed, our

one-factor approximation matches almost perfectly the level of average correlations (with a

maximum discrepancy across simulated portfolios of less than 4 basis points) and explains

on average 76% of the variability of pairwise correlations in the cross section of exposures.23

Similarly, the granularity effect is with the expected negative sign but, for large portfolios,

leads to a small deviation from target capital. At about 4%, this deviation is only slightly

higher than the one induced by the multi-factor effect. The magnitude of the granularity

effect is largely in line with a granularity adjustment proposed by Gordy and Luetkebohmert

(2006).24

By contrast, erroneous calibration of the ASRF model leads to much greater deviations

from the target capital. For large portfolios, the correlation dispersion effect raises the capital

measure by 35 basis points, which amounts to roughly 12% of the target level. The sign of

the effect reflects the regularity that exposures with higher PDs tend to be less correlated

with the rest of the portfolio. The shortcut capital measure ignores this regularity and, in

line with the intuition provided in Section 2.3, overestimates the target capital.

The correlation level effect has a similarly important implication. Specifically, this effect

reveals that raising the average correlation coefficient from 9.78% (the one observed in the

data) to 12% leads to a 19% overestimation of the target capital level. The sign of the devi-

ation is not surprising in light of the discussion in Section 2.3. It should be noted, however,

that adopting another shortcut level for the average asset return correlation would change

22The discussion of the multi-factor effect in this paper should not be confused with the analysis in
Duellmann and Masschelein (2006). These authors interpret the multi-factor effect as arising from a sectoral
concentration in a bank’s portfolio. Under such an interpretation, the multi-factor effect reflects not only
the importance of multiple risk factors but also what we call here correlation level and dispersion effects.

23The goodness-of-fit measure for the one-factor approximation is described in Appendix B. Across the
3000 simulated large portfolios, this measure ranges between 67% and 85%. For small portfolios, this range
is 63% to 86%.

24An application of the granularity adjustment formula (equation (6)) in Gordy and Luetkebohmert (2006)
would match exactly a granularity effect that leads to a 5.4% underestimation of the target capital for large
portfolios and a 24% underestimation for small portfolios.
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the result dramatically. For instance, a shortcut level of 6% leads to a 32% underestimation

of the target level.25

Turning to small portfolios, the decomposition results are qualitatively the same, with

the notable exception of the granularity effect. In these portfolios, a much smaller portion

of the idiosyncratic risk is diversified away and the granularity effect equals 53 basis points.

This amounts to a 15% underestimation of the target level.

4.1.1 Regression analysis

The importance of correlation level and dispersion effects can be appreciated from a differ-

ent point of view via regression analyses, the results of which are shown in Table 5. The

regressions – run on the cross section of 3000 simulated portfolios – are simple linear models

of capital discrepancy, which is defined as shortcut capital (based on a correlation of 12%)

minus target capital. We include three blocks of explanatory variables. The first block

consists of “pure” correlation characteristics: the average level and the dispersion in cor-

relation coefficients for each simulated portfolio.26 The second block of variables captures

possible interaction between correlation coefficients and PDs and includes the product of av-

erage correlation and average PD and the correlation between PDs and loading coefficients,

where the last variable is estimated under the one-common factor approximation. The third

block includes our measure of how well the one-factor approximation explains the observed

correlation matrix (defined in Appendix B). This measure reflects the importance of the

multi-factor effect in explaining capital discrepancies. Unfortunately, it is impossible to in-

clude a variable that proxies for the granularity effect because, given that all 3000 simulated

portfolios are homogeneous, there is no such variable that varies across portfolios.

In line with our previous findings, the regression results reveal that the correlation level

and dispersion variables have strong explanatory power. These variables explain about 30%

of the capital discrepancy and enter the regressions with statistically significant coefficients

of the correct signs. The negative sign of the coefficient of the average correlation variable

reflects the fact that a higher correlation in the data increases the target capital ratio and,

thus, has a negative effect on capital discrepancy. In turn, the positive sign of the coefficient

of the correlation dispersion variable is consistent with the above discussion that, when firms

25The rule-of-thumb asset return correlations reported in the literature range between 5 and 25%.
26This dispersion is calculated as the standard deviation of the loading coefficients under the one-factor

approximation of the correlation matrix. Recall that the dispersion of shortcut correlations is zero by
construction.
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with high PDs are less correlated with the rest of the portfolio, lower correlation dispersion

raises target capital. Since the shortcut capital abstracts from correlation dispersion, the

correlation dispersion variable has a positive impact on capital discrepancy.

Moreover, the regressions also show that the interaction between heterogenous PDs and

heterogenous correlations has a strong impact on assessments of portfolio credit risk. The

two interactive variables are both statistically and economically significant, and including

them in the regressions for large portfolios increases the adjusted R2 by 44 percentage points

to 76%. Similarly, for small portfolios, the adjusted R2 increases by 34 percentage points to

59%.

Lastly, the goodness-of-fit of the one-factor model cannot explain any of the variability of

capital discrepancy across simulated portfolios. The goodness-of-fit measure is statistically

insignificant in the regression for small portfolios, and economically insignificant for either

portfolio size. In addition, adding this variable to the regression does not affect adjusted R2.

This is just another illustration of our earlier finding that the multi-factor effect is negligible.

4.2 Estimation errors

The above results show that shortcut capital measures can deviate substantially from target.

In practice, shortcut measures are likely to be adopted by less sophisticated users of the

ASRF model who face constraints in terms of data and analytical skills. By contrast, large

and complex financial institutions are likely to construct their own estimates of asset return

correlations on the basis of in-house databases. This section demonstrates that, for realistic

sizes of such databases, estimation errors in the correlation parameters are also likely to lead

to large flaws in assessments of portfolio credit risk.

In order to quantify plausible estimation errors, we consider a portfolio whose “true”

credit risk parameters match those of the “typical” portfolio in our data set. For this

portfolio, we impose the simplifying assumption of homogeneous PDs (1%), LGDs (45%)

and pairwise asset return correlations (9.78%) and consider different numbers of underlying

exposures (see Table 6). Abstracting from issues of granularity, this assumption allows us

to use the ASRF model and calculate that the desired capital buffer, dubbed “benchmark”,

equals 2.97% for each portfolio size. This is the typical (ie average) capital buffer across the

simulated portfolios.

Then, we place ourselves in the shoes of a user of the model who does not know the exact

asset return correlations but estimates them from available data. Specifically, we endow the
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user with 60, 120 or 300 months of asset returns data – drawn from the “true” underlying

distribution – and calculate the sample correlation matrix. In order to quantify a plausible

range of errors in the estimate of the correlation matrix, we repeat this exercise 1000 times.

As reported in panels A and B of Table 6, the sample correlations contain estimation error

that remains substantial even for 300 months (or 25 years) of data.

Panel C of the table reveals how estimation errors in correlation coefficients translate into

deviation from the desired benchmark capital buffer.27 First, these deviations are affected

little by the number of exposures in the portfolio. Second, at standard confidence levels, the

deviations can be large even for the longest time series considered. Taking a portfolio con-

sisting of 1000 exposures and a user who has 120 months of data as an example, estimated

capital buffers can deviate from the benchmark level by as much as 23% with a 95% prob-

ability. Finally, estimated capital buffers exhibit a positive bias relative to the benchmark

level: their average level is invariably higher than 2.97%. This is because the true correlation

structure is assumed to be homogenous, while small-sample errors introduce dispersion in

estimated correlation coefficients. By the intuition presented in Section 2.3, this dispersion

raises the implied capital buffer in the presence of homogenous PDs.

The bias in estimated capital vanishes if the user of the model knows the true correlation

structure. In the present case, this means that the user knows that correlation coefficients are

the same across all pairs of firms but still needs to estimate their exact value. Operationally,

this translates into the user estimating the capital buffer on the basis of the average pairwise

correlation in its sample. The results, based on the 1000 simulations (for each portfolio size)

analysed above, are reported in panel D of Table 2.3. As expected, there is no longer bias

in the estimated capital buffer but the plausible errors in this estimate are still substantial.

Taking the same example as above, a user who has a portfolio of 1000 names and 120 months

of data can be reasonably expected to estimate a capital buffer that is 20% lower or higher

than the benchmark.

4.3 Alternative asset return distributions

It has been widely documented in the literature that asset returns are driven by distribu-

tions that have fatter tails than the convenient Gaussian distribution. This observation is

not innocuous because, for example, a Gaussian assumption tends to bias capital buffers

27In order to focus on issues in the estimation of the interdependence of credit risk across exposures, we
assume that the user knows the true PD and LGD.
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downwards as long as the empirical distribution of asset returns is driven by fat tails in the

distribution of the common factor. Such a distribution of the common factor implies a large

probability that assets of several firms fall below the threshold values at the same time, ie a

large probability of default clustering. We examine this issue in the remainder of the present

subsection.

In order to focus on the impact of alternative asset return distributions on capital mea-

sures, we consider a homogeneous portfolio in which all PDs equal 1% and all correlation

coefficients of asset returns equal 6%, 9.78% or 18%. For such a portfolio, we use the general

ASRF formula (equation (3)) and derive capital buffers under different distributional as-

sumptions. As reported in Table 7 (top half), we consider cases in which the single common

factor of asset returns is distributed Student t (with various degrees of freedom) but the

idiosyncratic factors are Gaussian. As expected, fatter tails in the distribution of the com-

mon factor (ie fewer degrees of freedom) translate into larger deviations from a capital buffer

derived under the assumption that all variables are Gaussian. This deviation decreases when

idiosyncratic factors are also allowed to follow a Student t distribution (bottom half of the

table).

In order to decide what distributional assumptions are supported by the data, we consider

time series of asset returns provided by Moody’s KMV for all firms in our sample. Across

the entire cross section of firms, the sample kurtosis (a measure of the fatness of the tails)

has a mean of 7.28 and a median of 4.83.28 Comparing these estimates to the kurtosis of

asset returns implied by different distributional assumptions (Table 7, right panel) we see

that there is evidence in the data for a “double-t” assumption, under which both common

and idiosyncratic factors are distributed Student t with 5 or 7 degrees of freedom.

If the asset returns are indeed driven by such double-t distributions, then a Gaussian

assumption, albeit convenient, would lead to substantial deviations from the desired capital

buffer. For a specific example, consider the case in which the common asset return correlation

is 9.78% (the average level in our sample). For such a portfolio, a double-t distribution (with

5 degrees of freedom for each factor) implies a capital buffer of 3.63% per unit of aggregate

exposure, which is 22% higher than the capital based on a Gaussian assumption.

28These estimates are based on monthly data on asset values between August 2001 and July 2006.
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5 Concluding remarks

This paper has quantified the relative importance of alternative sources of error in model-

based assessments of portfolio credit risk. We have found that a misspecification of the

popular ASRF model is likely to have limited impact on such assessments, especially for large

well-diversified portfolios. By contrast, erroneous calibration of the model – driven by flaws

in popular rule-of-thumb values of asset return correlation, plausible small-sample estimation

errors, or a wrong assumption regarding the overall distribution of asset returns – can affect

substantially measures of portfolio credit risk. These results highlight challenging tasks for

credit risk managers and supervisory authorities, especially since our analysis has abstracted

from several additional sources of error in risk parameter estimates. These sources relate to

the estimation of individual PDs and LGDs, time variation in asset return correlations, and

structural breaks in the credit environment that can impair the useful content of available

data.
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Appendix

A Monte Carlo simulations

Monte Carlo simulations deliver the target capital level. This method can be applied to any

portfolio comprising N equally weighted exposures, provided that the associated probabilities

of default, PDi, losses-given-default, LGD, and correlation matrix of asset returns, R, are

known.

The method consists of three general steps. In the first step, one uses the vector {PDi}N

i=1

and the assumption that asset returns are distributed as standard normal variables to obtain

an N × 1 vector of default thresholds. In the second step, one draws an N × 1 vector from

N standard normal variables whose correlation matrix is R. The number of entries in this

vector that are smaller than the corresponding default threshold is the number of simulated

defaults for the particular draw. In the third step, one repeats the second step a large

number of times to derive the probability distribution of the number of defaults. Denoting

this distribution’s (1− α)th percentile by β and the average PD in the portfolio by PD, the

target capital for a credit value-at-risk confidence level of (1 − α) equals LGD · ( β

N
− PD)

per unit of exposure.

In specific applications, we set N = 200 or 1000, LGD = 45%, α = 0.1% and {PDi}N

i=1

and R as estimated by Moody’s KMV. In addition, the estimate of β relies on 500000 Monte

Carlo simulations.

B Fitting a one-factor correlation structure

A one-factor approximation of an empirical correlation matrix is obtained as follows. Denote

the empirical correlation matrix by Σ and its elements σij , for i, j ∈ {1, · · · , N}. The one-

factor loading structure ρ ≡ [ρ1, ...ρN ] that minimizes the discrepancies between the elements

of Σ and their fitted counterparts are given by:

min
ρ

∑

i=1,··· ,N−1

∑

j>i

(σij − ρiρj)
2

Andersen et al. (2003) propose an efficient algorithm to solve this minimization problem.

The fitted correlation matrix Σ̂ has elements ρiρj .

We also construct a measure that reflects the “explanatory power” of the one-factor
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approximation:

Goodness-of-fit measure ≡ 1 − var(ǫ)

var(σ)

where σ is a vector of all pairwise correlation coefficients σij (i, j = 1, · · · , N, i < j) and ǫ

is a vector of the errors σij − ρiρj (i, j = 1, · · · , N, i < j). This measure reflects the degree

to which the cross-sectional variation in pairwise correlations can be explained by common

factor loadings in a single-factor framework.

C Gaussian copula

The Gaussian copula is an efficient algorithm for measuring portfolio credit risk when a

portfolio consists of a finite number of exposures, the correlation matrix is driven by a factor-

loading structure and underlying distributions are normal. The efficiency of the algorithm

stems from the notion that, conditional on the realization of the common factor(s), defaults

occurrences are independent across exposures. This allows for a closed-form solution for

the conditional probability of joint defaults. The corresponding unconditional probability is

then derived by integrating over the probability distribution of the common factor(s). For

further detail, see Gibson (2004).
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Figure 1: Four sources of error in capital measures
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Note: Capital measures, in per cent and per unit of aggregate exposure, on the vertical axes. For each panel

(unless noted otherwise), PD = 1% and LGD = 45% are the same across exposures.
1 The solid line plots target capital for a portfolio in which all pairwise asset return correlations equal

10%. The number of exposures in the portfolio (N) varies across the horizontal axis. The dotted line plots

the corresponding capital estimate when N = ∞. 2 The portfolio consists of two groups of exposures,

with w denoting the weight of the first group. Within each group, the asset return correlation equals 20%

for all exposure pairs. Inter-group correlation are zero. The solid line plots the target capital level, which

incorporates the two common factors in the simulated data. The dashed line plots the capital calculated

under a one-common-factor approximation of the correlation structure. This approximation imposes the

same common-factor loading on all firms and does not affect the average asset return correlation. 3 Capital

measures for different levels of the constant pairwise asset return correlation. 4 The solid line plots capital

measures under the assumption that PD = 1%, there is a single common factor and the loadings on this

factor are distributed uniformly in the cross section between
√

0.1 − c and
√

0.1 + c. For the other two

lines, PDs are distributed uniformly in the cross section between 0.5% and 1.5% and are perfectly positively

(dashed line) or negatively (dot-dashed line) correlated with the common-factor loadings.
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Figure 2: Distribution of individual PDs and pairwise correlations
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Note: The parameter estimates are reported by Moody’s KMV in July 2006 and relate to 10,891 non-financial

firms.
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Table 1: Sectoral composition of simulated portfolios

Large portfolio Small portfolio Memo:

Sector Number of Exposure Number of Exposure number of firms
names weight (%) names weight (%) in the sample

Aerospace & Defense 31 3.1 105
Agriculture 9 0.9 56
Air Transportation 4 0.4 83
Apparel, Footwear, & Textiles 17 1.7 357
Automotive 51 5.1 19 9.5 198
Broadcast Media 43 4.3 16 8.0 191
Business Services 23 2.3 1132
Chemicals 42 4.2 15 7.5 940
Computer Equipment 10 1.0 746
Construction 43 4.3 16 8.0 277
Electric, Gas, & Sanitary 107 10.7 39 19.5 335
Electronics & Electrical 18 1.8 693
Entertainment & leisure 33 3.3 294
Fabricated Metals 17 1.7 146
Food, Beverages, & Tobacco 63 6.3 23 11.5 490
General Retail 31 3.1 133
Glass & Stone 6 0.6 149
Health care 38 3.8 14 7.0 178
Legal & Other Services 16 1.6 452
Lodging 22 2.2 70
Machinery & Equipment 36 3.6 13 6.5 645
Medical Equipment 10 1.0 334
Mining 6 0.6 486
Miscellaneous Manufacturing 18 1.8 130
Non-defense Trans. & Parts 2 0.2 53
Oil Refining & Delivery 24 2.4 100
Oil & Gas Exploration 55 5.5 20 10.0 458
Other Trans. Services 22 2.2 108
Paper & Forestry 23 2.3 172
Personal Services 7 0.7 31
Primary Metals 11 1.1 188
Printing & Publishing 28 2.8 186
Repair Services & Rental 13 1.3 37
Restaurants 9 0.9 141
Rubber & Plastics 18 1.8 120
Semiconductors 2 0.2 177
Telecommunications 69 6.9 25 12.5 177
Trucking & Warehousing 5 0.5 68
Water Transportation 5 0.5 104
Wood, Furniture, & Fixtures 13 1.3 151

Total 1000 100 200 100 10891
Name concentration index 0.0010 0.0050
Sector concentration index 0.0432 0.1135

Note: A concentration index is defined as the sum of squared weights, which are set either at the firm or the

sector level.
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Table 2: Summary statistics (in percent)

mean std. dev. skewness median minimum maximum

PDs 2.67 5.28 2.49 0.39 0.02 20.00
Pairwise correlations 9.24 3.86 1.87 8.45 0.29 65.00

Note: The sample includes 10,891 non-financial firms.

Table 3: Characteristics of simulated loan portfolios (in percent)

A. Large portfolios (1000 firms)
mean std. dev. median minimum maximum

average PD 2.42 0.19 2.42 1.79 3.12
std. dev. of individual PDs 5.16 0.26 5.16 4.25 6.14
median PD 0.26 0.03 0.26 0.18 0.36
average correlation 9.78 0.22 9.77 9.14 10.73
std. dev. of loadings 9.33 0.31 9.32 8.33 10.47
corr (PD, loadings) -20.0 2.04 -20.1 -26.7 -12.8

B. Small portfolios (200 firms)
mean std. dev. median minimum maximum

average PD 2.28 0.36 2.26 1.24 3.68
std. dev. of individual PDs 5.05 0.53 5.06 3.01 6.89
median PD 0.24 0.05 0.23 0.11 0.55
average correlation 10.49 0.44 10.48 8.99 12.00
std. dev. of loadings 10.54 0.70 10.55 7.80 12.79
corr (PD, loadings) -19.8 4.59 -20.2 -31.8 -1.2

Note: The results are based on 3,000 simulated portfolios and are carried out in two steps. First, portfolio-

specific characteristics specified by row headings are calculated for each simulated portfolio. Second, sum-

mary statistics specified by column headings are calculated for each of the portfolio specific characteristics

obtained in the first step. “Loadings” are estimated under a one-common-factor approximation of the cor-

relation structure and refer to the firm-specific loadings of asset returns on the single common factor.
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Table 4: Capital measures and four sources of errors (in percent)

A. Large portfolios (1000 firms)

mean std. dev. median 95% interval 50% interval
Target capital 1 2.95 0.16 2.95 [2.64, 3.27] [2.84, 3.05]

Deviation from target due to: 2

Multi-factor effect 3 -0.03 0.03 -0.045 [-0.09, 0] [-0.045, 0]
Granularity effect 4 -0.11 0.01 -0.11 [-0.14, -0.09] [-0.12, -0.10]
Correlation dispersion effect 5 0.35 0.04 0.35 [0.27, 0.43] [0.32, 0.38]
Correlation level effect 6 0.55 0.06 0.55 [0.44, 0.66] [0.52, 0.59]

“shortcut” capital (corr=12%) 3.71 0.18 3.71 [3.37, 4.06] [3.59, 3.83]

Memo: correlation level effect if:

corr=6% -0.96 0.07 -0.96 [-1.11, -0.83] [-1.00, -0.91]
corr=18% 2.01 0.09 2.01 [1.84, 2.18] [1.95, 2.07]
corr=24% 3.47 0.13 3.47 [3.23, 3.72] [3.39, 3.56]

B. Small portfolios (200 firms)

mean std. dev. median 95% interval 50% interval
Target capital 1 3.35 0.30 3.34 [2.78, 3.94] [3.15, 3.53]

Deviation from target due to: 2

Multi-factor effect 3 -0.04 0.10 0 [-0.225, 0] [ 0, 0]
Granularity effect 4 -0.53 0.07 -0.53 [-0.65, -0.41] [-0.59, -0.47]
Correlation dispersion effect 5 0.38 0.11 0.37 [0.17, 0.58] [0.30, 0.45]
Correlation level effect 6 0.36 0.11 0.36 [0.15, 0.61] [0.29, 0.44]

“shortcut” capital (corr=12%) 3.52 0.34 3.51 [2.85, 4.23] [3.28, 3.75]

Memo: correlation level effect if:

corr=6% -1.07 0.12 -1.07 [-1.31, -0.85] [-1.15, -0.99]
corr=18% 1.76 0.19 1.75 [1.41, 2.15] [1.63, 1.88]
corr=24% 3.15 0.27 3.14 [2.65, 3.70] [2.97, 3.33]

Note: Summary statistics for the simulated portfolios underpinning Table 3 (3,000 simulations for each

portfolio size). The column entitled “95% interval ” reports the 2.5th and 97.5th percentiles of the statistics

specified in the particular row heading. The column entitled “50% interval” reports the corresponding 25th

and 75th percentiles.
1 Based on Moody’s KMV estimates of PDs and asset return correlations and a Monte Carlo procedure for

calculating the probability distribution of default losses. 2 Four sources of deviation from the target capital

level; a negative sign implies underestimation. The sum of the target capital level and the four deviations

equals the shortcut capital level. Each deviation (see table notes 3 to 6) is based on the assumptions

underlying previous deviations plus one additional assumption. 3 For the multi-factor effect, the correlation

matrix underpinning the target capital level is approximated under the assumption that there is a single

common factor. 4 For the granularity effect, there is the additional assumption that the number of firms is

infinite. 5 For the correlation dispersion effect, the additional assumption is that the loadings on the single

common factor are the same across exposures. 6 For the correlation level effect, the additional assumption

imposes a different, shortcut, level on the constant pairwise correlation.
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Table 5: Explaining the differences between target and shortcut capital

Large portfolios Small portfolios

1 2 3 1 2 3

constant 0.025 0.024 0.024 0.019 0.017 0.017
(54.2) (86.2) (86.1) (34.4) (40.7) (28.7)

avg corr -0.209 -0.278 -0.281 -0.182 -0.216 -0.216
(7.5) (65.9) (63.7) (26.0) (41.4) (41.0)

std dev of loading coefficients 0.037 0.039 0.035 0.020 0.024 0.023
(51.9) (13.4) (10.3) (4.5) (7.2) (4.9)

avg corr · avg PD 1.620 1.579 0.975 0.974
(47.3) (41.3) (20.9) (20.7)

corr(PD, loading coefficient) -0.016 -0.016 -0.015 -0.015
(51.8) (51.2) (39.6) (39.5)

goodness-of-fit of one-factor model 0.001 0.0001
(2.4) (0.1)

adjusted R2 0.32 0.76 0.76 0.25 0.59 0.59

Note: t-statistics in parentheses. The regression is based on 3,000 simulations for each portfolio size. The

dependent variable equals shortcut capital (based on asset return correlation of 12%) minus target capital (see

Table 4). Loading coefficients are estimated under a one-common-factor approximation of the correlation

structure of asset returns. The goodness-of-fit of the one-common-factor approximation is measured as

outlined in Appendix B.
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Table 6: Impact of estimation errors (in per cent)

A. Sample average of pairwise correlations
N=100 N=200 N=500 N=1000

T=60 9.72 [6.5, 13.3] 9.67 [6.4, 13.3] 9.64 [6.6, 13.0] 9.63 [6.9, 12.7]
T=120 9.77 [7.4, 12.4] 9.77 [7.6, 12.1] 9.76 [7.6, 12.1] 9.72 [7.7, 12.0]
T=300 9.75 [8.3, 11.3] 9.79 [8.3, 11.3] 9.74 [8.4, 11.2] 9.77 [8.4, 11.25]

B. Sample standard deviation of loading coefficients
N=100 N=200 N=500 N=1000

T=60 12.11 [10.3, 14.1] 11.84 [10.5, 13.2] 11.65 [10.8, 12.5] 11.58 [10.8, 12.2]
T=120 8.50 [7.4, 9.8] 8.34 [7.5, 9.1] 8.17 [7.6, 8.8] 8.13 [7.7, 8.6]
T=300 5.35 [4.6, 6.2] 5.24 [4.7, 5.7] 5.16 [4.8, 5.5] 5.12 [4.9, 5.4]

C. Estimated capital, based on one-factor loading structure
N=100 N=200 N=500 N=1000

T=60 3.49 [2.6, 4.6] 3.44 [2.5, 4.5] 3.42 [2.6, 4.4] 3.41 [2.6, 4.3]
T=120 3.23 [2.6, 4.0] 3.22 [2.6, 3.9] 3.21 [2.6, 3.9] 3.19 [2.6, 3.9]
T=300 3.07 [2.7, 3.5] 3.07 [2.7, 3.5] 3.06 [2.7, 3.5] 3.07 [2.7, 3.5]
benchmark 2.97 2.97 2.97 2.97

D. Estimated capital, based on constant loading coefficients
N=100 N=200 N=500 N=1000

T=60 2.97 [2.1, 4.0] 2.95 [2.0, 4.0] 2.94 [2.1, 3.9] 2.94 [2.2, 3.8]
T=120 2.98 [2.3, 3.7] 2.98 [2.4, 3.7] 2.97 [2.4, 3.7] 2.96 [2.4, 3.6]
T=300 2.97 [2.6, 3.4] 2.98 [2.6, 3.4] 2.97 [2.6, 3.4] 2.97 [2.6, 3.4]
benchmark 2.97 2.97 2.97 2.97

Note: Results are based on 1000 simulations of the asset returns of N firms over T months. Each pair of asset

return series is drawn from two standard normal variables with a correlation coefficient of 9.78%. Panel A

reports means (across simulations) of the cross-sectional averages of pairwise sample correlations. In brackets,

Panel A reports the corresponding 2.5th and the 97.5th percentiles of these averages. Panel B reports the

same statistics for the cross-sectional standard deviations of sample pairwise correlations. Panels C and D

report summary statistics of alternative capital measures, all of which are based on: (i) the ASRF formula

(equation 4), (ii) the assumption that all exposures have the same PD of 1% and the same LGD of 45%,

and (iii) alternative asset return correlations. The “benchmark” row reports the capital measure under the

true correlation structure. The other three rows in Panel C report the mean (across simulations) of capital

measures based on a one-common-factor approximation of the sample correlation matrices of simulated asset

returns (these matrices underpin Panels A and B). In brackets, Panel C reports the 2.5th and the 97.5th

percentiles of these capital measures. The corresponding rows in Panel D report corresponding statistics for

capital measures underpinned by uniform pairwise correlations, equal to the average pairwise correlation in

the simulated sample.
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Table 7: Alternative distributional assumptions

Capital measure (in per cent) Memo: kurtosis

corr=6% corr=9.78% corr=18% corr=6% corr=9.78% corr=18%
Student t

(5,∞) 4.33 7.24 14.31 3.02 3.05 3.17
(7, ∞) 3.33 5.45 10.65 3.01 3.02 3.06
(10, ∞) 2.77 4.45 8.55 3.00 3.01 3.03
(15, ∞) 2.43 3.87 7.32 3.00 3.00 3.02
(20, ∞) 2.27 3.58 6.74 3.00 3.00 3.01
(5, 5) 2.00 3.63 9.08 8.01 7.65 6.97
(7, 7) 1.92 3.30 7.38 4.78 4.65 4.41
(10, 10) 1.91 3.16 6.59 3.90 3.83 3.71
(15, 15) 1.91 3.07 6.11 3.48 3.45 3.38
(20, 20) 1.91 3.04 5.92 3.33 3.31 3.26

Gaussian 1.92 2.97 5.45 3.00 3.00 3.00

Note: In the first column, the two numbers in parentheses refer to the degrees of freedom of the t -distribution

of asset returns’ common and idiosyncratic factor, respectively. The capital measures are obtained by apply-

ing the general ASRF formula (equation 3) to a homogeneous portfolio, in which PD=1% and LGD=45%

for each exposure and the common pairwise asset return correlation coefficient is specified in the column

heading. The default boundary for such exposures is calculated on the basis of 10 million simulations.
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